Die Verfeinerung der Weberitstruktur der Verbindung Na₂NiFeF₇

ROBERT HAEGELE, WOLFGANG VERSCHAREN, DIETRICH BABEL*, JEAN-MICHEL DANCE, UND ALAIN TRESSAUD

Sonderforschungsbereich 127 (Kristallstruktur und chemische Bindung) und Fachbereich Chemie der Universität, Lahnberge, D 3550 Marburg/Lahn, Germany, und Laboratoire de Chimie du Solide du C.N.R.S., Université de Bordeaux I, 351, cours de la Liberation, F-33405 Talence, France

Received July 13, 1977

Eine vollständige röntgenographische Strukturbestimmung an einem Einkristall von Na₂NiFeF₇ bestätigt die orthorhombische Weberitstruktur dieser Verbindung: a = 7.245, b = 10.320, c = 7.458 Å, z = 4, Raumgruppe *Imm2*, R = 2.9% für 527 symmetrieunabhängige Reflexe bei anisotroper Verfeinerung. Entlang der kürzesten Achse der Elementarzelle sind NiF_{6/2}-Oktaeder über Ecken zu Ketten verknüpft, die miteinander in den Richtungen [011] und [011] über 4 Ecken von FeF₂F_{4/2}-Oktaedern verbunden sind. Die mittleren Abstände in den verzerrten Oktaedern betragen Ni-F = 1.980 bzw. Fe-F = 1.933 Å. Beide Natriumionen sind 8-fach koordiniert, wobei das eine wie in Pyrochloren eine besonders kurze Achse F-Na-F (2.16/2.27 Å) zeigt.

A complete X-ray structure determination on a single crystal of Na₂NiFeF₁ confirms the orthorhombic weberite-type structure of this compound: a = 7.245, b = 10.320, c = 7.458 Å, z = 4, space group *Imm2*, R = 2.9% for 527 symmetry-independent reflections anisotropically refined. Along the shortest axis of the unit cell NiF_{6/2} octahedra are corner-linked to form chains, which are connected with each other in the [011] and [011] directions via four corners of FeF₂F_{4/2} octahedra. The average distances in the deformed octahedra are Ni-F = 1.980 and Fe-F = 1.933 Å resp. Both sodium ions are 8-coordinated, one of them exhibiting a particularly short axis F-Na-F (2.16/2.27 Å) as in pyrochlores.

Einleitung

Angeregt durch die Existenz des Minerals Weberit, Na₂MgAlF₇, dessen Struktur schon 1944 von Byström (1) aufgeklärt wurde, ist in den letzten Jahren eine Reihe quaternärer Fluoride Na₂ $M^{II}M^{III}$ F₇ dargestellt worden, die wie erwartet analog zum Weberit orthorhombisch kristallisieren (2–7). Besonders interessierten Vertreter mit paramagnetischen Übergangsmetallionen M(II) und/oder M(III), weil die unterschiedliche Lage dieser Kationen im Oktaedernetz der Weberitstruktur

* Sonderdruckanforderungen an D. Babel, Marburg.

verschiedenartige magnetische Wechselwirkungen erwarten ließ (4-7). Mittels Neutronenbeugung sind aus Pulverdaten die magnetischen Strukturen der Verbindungen Na₂NiFeF₇ und Na₂NiAlF₇ bestimmt worden (8, 9).

Bei diesen Untersuchungen tauchte die Frage nach der Zuverlässigkeit der von Byström (1) bestimmten Weberitstruktur auf. Der genannte Autor ordnete dem Mineral die azentrische orthorhombische Raumgruppe $Imm2-C_{2\nu}^{20}$ (Nr. 44) (10) zu. Dies ist eine maximale zellgleiche Untergruppe vom Index-2 zu der zentrosymmetrischen Raumgruppe

Immb— D_{2h}^{28} (Nr. 74) (10, 11). Die von **Byström** angegebenen Atomlagen---insbesondere die speziellen Parameter der Kationen, s. Tabelle II-sind auch mit dieser höhersymmetrischen Raumgruppe Immb vereinbar. Ferguson (12) konnte den einzigen Reflex (390) des Byström'schen Datensatzes, der der zusätzlichen Bedingung für Immb (hk0:h = 2n, k = 2n) widersprach, nicht beobachten und schlug daher diese Raumgruppe für den Weberit vor. Als weitere Alternative nannte er die Raumgruppe I2mb $-C_{2\nu}^{22}$ (Nr. 46), die denselben systematischen Auslöschungen entspricht.

Zur Behebung der Zweifel bezüglich der Raumgruppe und zur genaueren Festlegung der Atomlagen eines auch wegen seines ferrimagnetischen Verhaltens (4, 8, 13) interessierenden Weberits, wurde an Na₂NiFeF₇ eine vollständige Strukturbestimmung durchgeführt, deren Ergebnisse im Folgenden mitgeteilt werden. Die zur Untersuchung verwendeten Einkristalle der Verbindung wurden aus dem Schmelzfluß erhalten, wie es an anderer Stelle beschrieben ist (6, 14).

Strukturbestimmung

Von mehreren Kristallen wurden zunächst Präzessionsaufnahmen (MoKa) zur überprüfung von Symmetrie und systematischen Auslöschungen hergestellt. Dabei ergab sich kein Widerspruch zu der von Byström (1) gewählten Raumgruppe Imm2; insbesondere trat eine ganze Reihe von Reflexen h k 0 mit $h, k \neq 2n$ auf (z.B. 330, 350, 510). Dies schließt die von Ferguson (12) vorgeschlagenen Raumgruppen Immb und I2mb aus, die mit der oben erwähnten Zusatzbedingung über die einzige von uns beobachtete Auslöschungsregel (hk l: nur für h + k + l = 2n vorhanden) hinausgehen.

Zur Messung der Reflexintensitäten auf einem automatischen Vierkreisdiffraktometer (CAD4, Enraf-Nonius) wurde ein völlig klarer Kristall verwendet, der zuvor zu einer Kugel von 0.2 mm Durchmesser geschliffen worden

TABELLE I

Angaben zur Elementarzelle von Na ₂ NiFeF $_7$						
Gitterkonstanten [Å]	a = 7.245, b = 10.320,					
	$c = 7.458, je \pm 0.001$					
Raumgruppe	$Imm2 - C_{2y}^{20}$					
Auslöschungen	$h k l: h + k + l \neq 2n$					
Zellinhalt	4 Formeleinheiten					
Dichte [g cm ⁻³]	gefunden 3.48 (pyknometrisch), berechnet 3.50					

war. Die Bestimmung der Gitterkonstanten, die mit weiteren kristallographischen Angaben in Tab. I aufgeführt sind, erfolgte durch eine Kleinste-Quadrate-Verfeinerung aus 30 gemessenen Beugungswinkeln ($MoKa_1$ -Strahlung/Graphit-Monochromator).

Zur Intensitätsmessung gelangten 1355, z.T. symmetrieäquivalente Reflexe, die innerhalb einer Kugelschale von 6 < θ < 31° lagen. Aufgenommen wurde nach der $\omega/2\theta$ -scan-Technik, bei einer scan-Breite von 2° und einer maximalen Messzeit von 3 min pro Reflex. Der Untergrund wurde zu beiden Seiten der Reflexe mit jeweils einem Viertel der Meßzeit registriert. Um die Konstanz der Meßbedingungen zu überwachen, erfolgte in regel-Abständen die Messung mäßigen ausgewählter Kontrollreflexe.

Die aus den Meßdaten gewonnenen Nettointensitäten wurden nach Korrektur für Lorentz-Polarisation (15)und Kugelabsorption ($\mu R = 0.63$) zu einem Satz von symmetrieunabhängigen Strukturfak-527 toren F_{α} gemittelt. Die Intensitätsunterschiede Mittelwertbildung symmetrieder bei aquivalenter Reflexe übertrafen dabei in keinem Falle das Doppelte der Standardabweichung σ , die sich aus der Zählstatistik Von Einzelmessung ergab. den ieder genannten 527 Reflexen erhielten 14, die mit $F_{o} < 3\sigma$ registriert worden waren, den Wert F_{o} = 0 zugeordnet.

Der anschließenden Verfeinerung nach der Methode der kleinsten Fehlerquadrate (16) wurde als Strukturmodell die von Byström (1) für Na₂MgAlF₇ angegebene Struktur mit deren

TABELLE II

Dunktlage	Na ₂ MgAlF ₇					7	R11	RJJ		R12	B 13	 823
und Atom	x	у	z	σχ	σ_y	σ_z	σ_{B11}	σ_{B22}	σ_{B33}	σ_{B12}	σ_{B13}	σ_{B23}
4c Mg/Ni	0.25	0	0	0.2504 <i>0.0003</i>	0	-0.0028	0.411 <i>0.022</i>	0.476 0.023	0.613 <i>0.023</i>	0	0.081	0
4d Al/Fe	0	0.25	0.25	0	0.2510 <i>0.0003</i>	0.2471 <i>0.0003</i>	0.372 <i>0.024</i>	0.368 <i>0.025</i>	0.413 <i>0.025</i>	0	0	-0.192 0.019
4c Na1	0.25	0	0.5	0.2445 <i>0.0012</i>	0	0.4895 <i>0.0020</i>	1.510 <i>0.113</i>	1.884 <i>0.106</i>	4.496 0.163	0	-0.631 <i>0.113</i>	0
4 <i>d</i> Na2	0	0.25	0.75	0	0.2479 <i>0.0015</i>	0.7541 <i>0.0011</i>	1.582 <i>0.094</i>	3.726 0.146	1.197 0.092	0	0	-1.326 0.108
2a F1	0	0	0.89	0	0	0.8998 <i>0.0010</i>	0.166 <i>0.222</i>	3.108 <i>0.416</i>	1.128 <i>0.294</i>	0	0	0
2b F2	0	ł	0.61	0	1 /2	0.6054 <i>0.0010</i>	0.669 <i>0.252</i>	1.910 0.359	1.805 <i>0.361</i>	0	0	0
4d F3	0	0.16	0.47	0	0.1573 <i>0.0006</i>	0.4772 <i>0.0006</i>	2.042 0.188	1.784 <i>0.194</i>	0.590 <i>0.162</i>	0	0	0.357 <i>0.13</i> 6
4d F4	0	0.34	0.03	0	0.3352 <i>0.0006</i>	0.0174 <i>0.0006</i>	1.393ª 0.105					
8e F5	0.19	0.13	0.18	0.1980 <i>0.0006</i>	0.1329 <i>0.0005</i>	0.1816 <i>0.0005</i>	1.263 <i>0.154</i>	1.807 0.197	2.973 0.269	0.647 0.181	0.344 <i>0.204</i>	-1.192 <i>0.213</i>
8e F6	0.31	0.13	0.82	0.3047 <i>0.0006</i>	0.1341 <i>0.0004</i>	0.8122 <i>0.0004</i>	1.165 0.139	0.937 0.149	1.149 <i>0.163</i>	-0.180 0.154	0.007 <i>0.153</i>	0.691 <i>0.151</i>

Atomlagen und Temperaturfaktoren $[Å^2]$ mit Standardabweichungen für Na₂NiFeF₇ im Vergleich zu den Lagen von Na₂MgAlF₇ (1)

^a Beim Fluoratom F4 wurde wegen der Tendenz anisotroper Temperaturfaktorkomponenten B_{ij} , bei der Verfeinerung negative Werte anzunehmen, nur der isotrope Temperaturfaktor verfeinert.

Atomkoordinaten zugrundegelegt (s. Tabelle II). Dies führte mit einem isotropen Temperaturfaktor von B = 1.0 Å² für alle Atome und mit den Atomformfaktoren der entsprechenden Ionen von Cromer und Waber (17) bereits zu einem konventionellen Zuverlässigkeitsfaktor von R = 0.16.

Einige Verfeinerungszyklen unter Freigabe individueller isotroper Temperaturfaktoren sowie der Lageparameter verbesserte dieses Ergebnis auf R = 0.061. Dabei mußten wegen starker Korrelationen der z-Parameter der Anionen F1/F2, F3/F4 und F5/F6—die z-Summe dieser Paare ergibt nach Tabelle II für Na₂MgAlF₇ spezielle Werte—diese Größen für die Atome F1, F3, F4 getrennt von denen für die Atome F2, F4, F6 verfeinert werden.

Eine zum Vergleich unter Annahme

statistischer Verteilung der Kationen Ni(II)/Fe(III) durchgeführte Rechnung ergab unter den gleichen Bedingungen einen etwas schlechteren Zuverlässigkeitsfaktor von R =0.067. Die abschließenden Verfeinerungen mit anisotropen Temperaturfaktoren wurden daher allein auf der Basis des erstgenannten Modells mit geordneter Kationenverteilung vorgenommen. Sie führten zu den in Tabelle II wiedergegebenen Atomparametern und konventionellen bzw. gewogenen R-Faktoren von $R = \sum_{w} ||F_{o}|| - |F_{c}||/\sum_{w} |F_{o}|| = 0.029 \text{ bzw.}$ $R_{w} = \{\sum_{w} w(|F_{o}|| - |F_{c}|)^{2}/\sum_{w} wF_{o}^{2}\}^{1/2} = 0.029$ (Gewichte w = 1 für alle 527 Reflexe). Ohne Berücksichtigung der 14 mit $F_0 = 0$ eingesetzten Reflexe erniedrigten sich beide R-Faktoren auf 0.027. Die zugehörigen Strukturfaktoren $F_{\rm o}$ und $F_{\rm c}$ sind in Tabelle III wiedergegeben.

HAEGELE ET AL.

TABELLE III

Strukturfaktoren 10 $F_{\rm 0}$ und 10 $F_{\rm c}$ für $\rm Na_2NiFcF_7,$ bezogen auf einen Zellinhalt von 556 Elektronen

н= о		κι	FORS	FCALC	ĸ	ι	FOBS	FCALC	ĸ	L	FORS	FCALC	ĸ	L	FORS	FCALC
K L FOR	FCALC	8 1 6 3	455 502	441 481	2	7	315 237	324 242	13 13	1 3	229 175	233 181	12	0	52	28
0 4 201	3 2025) 461	85 87	259 174	247 170	3	0 Z	67 312	36 307			H= 5				H≈ 7	
0 8 81	8 788 2 123	89 90	168	176	3	4 6	320 336	326 347	к	L	FORS	FCALC	ĸ O	L 1	F08S 59	FCALC 61
1 3 36	367 7570	92	35 56	46 38	3 3	в 10	172 52	170	0	1 3	840 545	617 534	0	3	232 418	215 407
1 7 26	8 256 1 295	96 98	101 137	85 131	4	1 3	847 720	827 722	0	5	230 118	227 116	0	0	189	194 27
2 2 2174	2269	10 1 10 3	444 230	427 212	4	57	134 76	103 65	0	9 0	101 37	191 32	1	2	225 55	229 56
2 6 107	5 1067 3 R	10 5 10 7	295 188	291 183	5	9 0	90 66	96 61	1	2	95 363	88 371	1	6 8	63 34	62 30
2 10 660) 670 5 997	11 O 11 2	23 102	10 110	5	2	32 250	38 249	1	6 8	110 39	106 24	2	1 3	318 189	317 180
3 3 1514 3 5 196	1544	11 4	37 40	15 38	5	5	76 24	A5 41	2	1 3	526 171	511 150	2	57	259 259	270 278
3 7 544	556 485	12 1 12 3	218 262	215 254	6	13	559 351	533 328	2	57	305 221	305 223	3	0 2	12 103	10
4 0 1122	1164 509	12 5 13 2	307 68	308 74	6	57	123 347	105 343	23	9	214 33	236 50	3	6	140 188	147 192
4 4 134	1340	14 1 14 3	237 213	245 224	67	2	53 372	109 376	3	2	344 307	353 315	:	13	416 417	418 424
4 8 103	1033 96		H= 2		77	4 6	120	124 78	3	6 8	32 75	46 79	4	5	179 89	174 103
5 1 401 5 3 601	400 605	ĸL	F 08 5	FCALC	7 8	в 1	103 34	108	4	1	189 348	205 337	5	0 2	34 19	40 50
5 5 7	5 83 2 383	0 Z 0 4	1081 179	1130 151	8 8	3	308 366	290 362	4	57	347 429	335 441	5	4 6	92 43	98 49
5 9 33	331 896	0 6. 0 8	1454 314	1397 304	8 9	0	351	345 18	4 5	9 2	268 266	279 265	6	1 3	370 263	367 260
6 2 1950) 1904 9 115	0 10	643 869	629 893	9 9	2 4	104 144	108 145	5	6	120	121 118	67	5 2	123 179	125
6 6 122	5 1208 5 39	13	422 973	436 979	9 9	6 8	46 183	27 176	5	8 1	70 267	71 252	77	4 6	59 24	55 40
7 1 599	2 594 2 178	17	434 262	428 252	10 10	1 3	259 215	254 220	6	3 5	274 283	263 284	8 6	1 3	108 233	104 236
7 5 47	471 5 251	20 22	2176 256	2238 292	10	5 7	376 283	375 289	6 7	7 0	403 33	404 14	8 9	5	259 47	265 45
7 9 18	3 204 3 1906	2 4 2 6	1936 120	1979 124	11 11	24	125	125 220	777	2	144 352	148 354	9 10	4	65 190	57 200
8 2 22	221 1002	2 8 2 10	914 28	886 70	11 12	6 1	131 394	143 407	7	6 8	124	120 54	10	3	159 19	180
8 6 13 8 8 50	146	3 1 3 3	382 661	370 677	12	3	326 253	328 254	8 8	1	505 465	510 455			H= 8	
9 1 672	2 671 3 414	35 37	128 330	130 321	13 13	0 Z	16 71	11 60	8 8	5	173 85	173	ĸ	L	FOBS	FCALC
9 5 49	419 276	39 40	286 521	287 499	13 14	4 1	34 323	35 336	9 9	2 4	55 11	35 21	0	С 2	939 347	917 344
10 0 11 10 2 102	124	4 2 4 4	2505 321	2479 356			H= 4		9 10	6	107 429	103 426	0	4	869 86	. 852 92
10 4 52	44 532	46 49	1062	1068	к	L	FCBS	FCALC	10 10	3 5	198 196	195 205	1	1	273 376	265 368
10 8 54	44	410 51	494 390	519 377	C C	0 2	2724 332	2683 361	11 11	0 2	23 162	16 175	1 2	5 0	94 123	89 115
11 3 522 11 5 82	526 75	53 55	835 422	830 419	0	4 6	1547 126	1538 135	11 12	4	120 110	120 107	2	2 4	846 83	861 84
11 7 27 12 0 77	5 269 2 779	57 59	473 271	478 270	0	8 1	845 501	826 505	12	Э 0	186 29	192 19	2	6 1	590 552	612 564
12 2 320) 315) 739	60 62	1419 322	1383 285	1	3 5	201 286	188 282			H= 6		3	3 5	212 391	219 397
12 6 2: 13 1 24	26 245	6 6	1154 87	1120 63	1	7 9	284 314	275 302	к	L	FURS	FCALC	4	0 2	1110 133	1108 132
13 3 19 13 5 14	5 212 5 140	68 71	598 679	611 687	2 2	0 2	136 1629	119 1627	0	0 2	483 1192	462 1171	. 4	4	631 64	634 62
14 0 21	9 201 9 578	7375	278 761	276 751	2 2	4 6	167 891	165 905	0	6	31 748	55 737	5	1 3	360 152	361 145
H= 1		- 77	349 208	347 200	23	Р 1	26 861	31 873	0	8 1	40 355	46 353	5	5 0	275 163	279 159
K L F08:	5 FCALC	80 82	375 1080	403 1046	3	3	722 381	757 387	1	35	621 430	623 423	6	2 4	875 99	581 87
0 3 56	9 574 9 447	84	165 1032	170 1012	3 3	7 9	429 360	441 365	1 2	7 C	373 1301	367 1290	7	1 3	197 340	202 344
0 7 68	8 98 323	88 91	117 157	120 165	4	0 2	1504	1475 70	2	2	105 1174	125 1185	8 8	0 2	561 161	568 142
1 2 18	3 183 353	93	212 344	208 350	4	4 6	1044	1043 152	2	6 8	108 620	113 654	3	1	333	335
166 183	1 34 5 6	97 100	189 923	184 933	4 5	А 1	732 443	751 450	3	3	184	170 149			H= 9	
1 10 10	5 · 94 3 131	10 2 10 4	254	248 1016	5	3	321 240	320 239	3	7	379 231	386 239	Č,	1	F 085 228	FC4LC 227
2 5 40	395 5 293	10 6	22	217	5	?	287	291 282	4	2 2	1113	259	0	3 5	296	293
3 0 4	5 31	11 5	213	204	6	S	1522	1484	-	6	952	956	1	z	82	75
3 2 28	280	12 2	766	777	6	6	954	938	ŝ	1	378	379	2	1	293	306
3 6 13	9 132	12 6	494	511	7	1	367	373	5	5	473	476	2	5	233	246
4 1 5	5 41	13 3	330	327	1	5	257	260	é	ò	812	806	ž	2	52	68
4 5 32	5 314	14 0	001 H= 1	(10	8	0,	1233	1220	6	4	854	845 37	4	ŝ	290	299
4 9 23	229	× 1	6085	FCALC	e	4	A53	846 50	777	ĭ	319	319	5	4	21	35
5 2 32	6 3 <u>1</u> 3	0 1	393	411	8	A t	560	574 521	777	57	349	349 298	67	э о	167	102
5 6 10	HO 1 71	0 5	703 295	684	9	3	427 345	428 345	8	0	87 952	74 936	7	ż	39	33
5 10 7 6 1 43	6 64 0 411	0 9	487	479	10	7	303 823	299 822	8 8	4	127	116 629			H= 10	
6 3 37 6 5 24	1 350 5 235	1 2	627 181	630 176	10	4 6	47 543	47 546	9 9	1 3	161 275	143 272	K O	L Q	FC85 258	FCALC 274
6745 6711	9 447 6 130	1618	154 ن0	152 46	11	1 3	303 307	299 304	9 10	5	205	205 786	0	2	698 204	699 201
7 2 4	1 45 0 287	1 10 2 1	1A 527	32 509	11	5	188 804	188 815	10 10	2	120	104	1	3	401 637	401
767	3 63 5 72	23 25	218 395	179 392	12	24	172 640	159 655	11	1	271 218	282 223	3	1 0	201 187	196

Diskussion

Die Zusammenstellung der Atomkoordinaten in Tabelle II zeigt, daß die Ergebnisse für unwesentlich den Na₂NiFeF₇ nur von Angaben Byströms (1) für Na₂MgAlF₇ abweichen. Die Verfeinerung am Beispiel der Nickel-Eisen-Verbindung bestätigt insbesondie von dem Autor für die dere Weberitstruktur gewählte Raumgruppe Imm2, $C_{2\nu}^{20}$ (10). Auf die Standardaufstellung dieser Raumgruppe beziehen sich sowohl die Achsenwahl Byströms als auch alle Angaben vorliegenden Textes. Die davon des abweichende Weberitaufstellung von Ferguson (12), der damit älteren Angaben Brossets (18) folgte, hat in der späteren Literatur (2, 8) öfters zu Verwechslungen und irrtümlichen Feststellungen geführt, auf die hiermit aufmerksam gemacht sei.

In Abb. 1 ist die Weberitstruktur der Verbindung Na₂NiFeF₇ dargestellt und in Abb. 2 ein Detail ihres Oktaedernetzes, in das zur Veranschaulichung der vollständigeren Angaben in Tabelle IV die wichtigsten interatomaren Abstände eingetragen sind. Der Mittelwert im NiF₆-Oktaeder beträgt für Ni-F = 1.980 Å; das ist ein deutlich kleinerer Abstand, als er z.B. in den kubischen bzw. hexa-

ABB. 1. Die Weberitstruktur in der Standardaufstellung der Raumgruppe Imm2. FeF₆-Oktaeder schraffiert. Die Kationen sind der übersichtlichkeit halber nicht mit eingezeichnet.

ABB. 2. Atomabstände im Oktaedernetz der Weberit-Struktur von Na₂NiFeF₇. Offene Kreise: Ni, ausgefüllte Kreise: Fe. (Detail aus Abb. 1, linker oberer Quadrant, Orientierung wie dort.)

gonalen Fluorperowskiten ANiF₁ (A = K, Rb, Cs) mit 1.99...2.04 Å beobachtet wird (19-21). Wie in den genannten Perowskiten gehören auch im Weberit Na2NiFeF, alle das Nickel umgebenden Liganden zu jeweils 2 Oktaedern, so daß sich die Zusammensetzung $NiF_{6/2}^- = NiF_3^-$ ergibt. Eine direkte Verknüpfung mit anderen NiF₆-Oktaedern liegt im Weberit jedoch nur in Richtung [100] vor, in der über transständige Liganden gewinkelte Ketten mit Ni-F-Ni = 131.9 bzw. 136.3° gebildet werden. Als Bindeglied zwischen den Ketten dienen die FeF6-Oktaeder, die nicht mit anderen Eisen-, sondern nur mit Nickelzentren verbrückt sind. Die beiden vorkommenden Brückenwinkel Fe-F-Ni sind nicht signifikant verschieden und betragen im Mittel 138.8° (s. Tabelle IV).

Über diesen Winkel verläuft auch der antiferromagnetische Superaustausch von Na₂NiFeF₇, der für die Ni-F-Fe-Brücke wegen der Beteiligung des wie Ni²⁺ e_s^2 -konfigurierten, aber höher geladenen Fe³⁺ stärker als die Ni-F-Ni-Wechselwirkung ist. Da dasselbe Eisenion auf die gleiche Weise mit zwei Nickelionen koppelt, die ihrerseits selbst in der Nickel-Oktaederkette benachbart sind,

HAEGELE ET AL.

TABELLE IV

				- /	
Zent ato	ral m				F–F
Ni	Ni-F1	1.954 (4)	F2-Ni-F5	83.79 (21) 2×	2.644 (5)
	-F5	1.979 (5) 2×	F1-Ni-F6	85.75 (21) 2×	2.686 (4)
	-F2	1.981 (4)	F5-Ni-F5	87.73 (27)	2.742 (10
	-F6	1.994 (4) 2×	F6-Ni-F6	87.92 (22)	2.768 (8)
	Ni–F	1.980 Mittel	F5-Ni-F6	92.17 (16) 2×	2.862 (5)
	FF	2.798 Mittel	F1-Ni-F5	94.61 (22) 2×	2.891 (7)
			F2-Ni-F6	95.85 (20) 2×	2.950 (7)
			F1-Ni-F2	177.77 (32)	
			F5-Ni-F6	179.63 (21) 2×	
Fe	Fe-F6	1.909 (5) 2×	F5FeF6	84.63 (18) 2×	2.595 (6)
	$-\mathbf{F4}$	1.921 (6) terminal	F3–Fe–F5	84.91 (20) 2×	2.642 (6)
	-F5	1.945 (5) 2×	F4–Fe–F6	86.87 (20) 2×	2.634 (5)
	-F3	1.970 (6) terminal	F4–Fe–F5	93.42 (19) 2×	2.814 (7)
	Fe–F	1.933 Mittel	F3-Fe-F6	94.79 (18) 2×	2.855 (7)
	F–F	2.732 Mittel	F5-Fe-F5	95.07 (31)	2.869 (9)
			F6–Fe–F6	95.66 (28)	2.830 (8)
			F3–Fe–F4	177.52 (32)	
			F5–Fe–F6	179.60 (25) 2×	
	Ni-F2-Ni	131.90 (43)	F3-Na2-F4	179.72 (78)	
	Ni-F1-Ni	136.35 (44)	Na2–F4	2.160 (11)	
	Ni-F5-Fe	138.61 (25)	-F3	2.268 (11)	
	Ni-F6-Fe	138.90 (22)	-F6	2.538 (8) 2×	
			-F5	2.568 (9) 2×	
	Nal-F3	2.404 (8) 2×	F1	2.780 (15)	
	-F4	2.523 (8) 2×	-F2	2.828 (15)	
	-F5	2.696 (14) 2×	Na2—F	2.531 Mittel	
	-F6	2.810 (13) 2×	Na1-F	2.608 Mittel	

INTERATOMARE ABSTÄNDE [Å] UND WINKEL [°] VON Na₂NiFeF₂^a

^a Die Standardabweichungen (in Klammern) beziehen sich auf die letzte (n) Dezimale (n).

resultiert so für die letzteren ferromagnetische Einstellung und insgesamt Ferrimagnetismus (4, 8, 13). Dagegen ist der Weberit Na₂NiAlF₇ antiferromagnetisch, da hier die angestrebte Antiparallelstellung innerhalb der Ni-Oktaederkette durch das diamagnetische Al³⁺ nicht gestört wird (7, 9).

Die zur Verknüpfung von zwei parallelen Nickel-Oktaederketten im Na₂NiFeF₇ benutzten 4 Brückenliganden jedes FeF₆-Oktaeders liegen etwa in einer Ebene (s. Abb. 1). Da die beiden transständigen, ungefähr senkrecht dazu orientierten Liganden am Eisen unverbrückt bleiben und die Tendenz des höhergeladenen Kations zur Isolierung seines Oktaeders unterstreichen, ergibt sich so die Zusammensetzung $FeF_2F_{4/2} = FeF_4^-$ und insgesamt für das resultierende 3-dimensionale Oktaedergerüst NiFeF₇²⁻. Die Ladung wird durch die eingelagerten Natriumionen kompensiert, die eine stark verzerrte Achterkoordination aufweisen (Mittelwerte Na-F = 2.531 bzw. 2.608 Å).

Die oktaedrische Koordination um das Nickel und Eisen ist ebenfalls etwas verzerrt. Während die Winkel F-Ni-F maximal etwa 6° von 90° bzw. 2° von 180° abweichen und die größte Differenz der Abstände $\Delta_{\text{Ni-F}} =$ 0.04 Å $\approx 8...10\sigma_{\text{Ni-F}}$ beträgt, ergeben sich bei den Winkeln F-Fe-F Abweichungen von etwa 5 bzw. 2° und bei den Abständen Unterschiede von max. $\Delta_{\text{Fe-F}} = 0.061$ Å $\approx 10...12\sigma_{\text{Fe-F}}$. Der Mittelwert Fe-F = 1.933 A stimmt aber gut mit den bei den Elpasolithen Rb₂NaFeF₆ und Cs₂NaFeF₆ beobachteten Abständen von 1.932 bzw. 1.922/1.930 überein (22, 23). Besser als diese Strukturen mit isolierten FeF Oktaedern sind iedoch die Schichtstrukturen $A \operatorname{FeF}_{A} (A = K, \operatorname{Rb}, \operatorname{Cs})$ zum Vergleich geeignet, weil dort wie im Weberit 4 verbrückende und 2 terminale Liganden das Eisen koordinieren. Die Mittelwerte Fe-F = 1.910 Å (K), 1.918 Å (Rb) und 1.928 Å (Cs) setzen sich in diesen Fällen aus 4 längeren Abständen zu den Brückenliganden und 2 kürzeren zu den terminalen zusammen (24-26). Die kurzen Abstände in den genannten Schichtstrukturen sind mit Fe-F \approx 1.85 Å etwa um 0.1 Å kleiner, als die langen. Es fällt auf, daß trotz ähnlicher Gegebenheiten der FeF₆-Oktaederverknüpfung im Weberit die beobachteten Abstandsunterschiede geringer sind, und insbesondere, daß hier der größte Abstand bei einem terminalen. der kürzeste dagegen bei zwei der verbrückenden Liganden beobachtet wird (s. Abb. 2, Tabelle IV). Diese teilweise Umkehrung der Abstandsverhältnisse wird verständlich, wenn man einerseits bei den verbrückenden Liganden die im Vergleich zu Fe³⁺ geringere Ladung Brückenpartners Ni²⁺ berücksichtigt. des Andererseits werden die Abstände der terminalen Liganden des FeF₆-Oktaeders durch das kleinere Alkali-Gegenion Natrium gerade umgekehrt im Sinne einer Dehnung beeinflußt. Tatsächlich sind es auch eben die beiden genannten terminalen Fluoridionen F3 und F4. die die kürzesten Na-F-Bindungen zu beiden Natriumionen der Weberitstruktur eingehen. Besonders im Falle von Na2 ist hervorzuheben, daß hier mit Werten von Na-F = 2.16bzw. 2.27 Å die Radiensumme-2.35 Å auf die Koordinationszahl 6 bezogen (27)-beträchtlich unterschritten wird.

Die genannten kurzen Abstände treten in praktisch linearer Anordnung F-Na-F = 179.7° auf. Dadurch hebt sich hier eine Zweierkoordination ab, mit der es möglicherweise zusammenhängt, daß auch Verbindungen $Ag_2M^{II}M^{III}F_7$ des Silbers noch in der Weberitstruktur kristallisieren (6, 7, 28). Die Ergänzung zur Achterkoordination ergibt sich durch eine äquatoriale Umgebung in Form eines gewellten Sechsrings. In unverzerrter Form kommt dieses Koordinationspolyeder mit S_6 -Symmetrie bei den 8-fach koordinierten Kationen der Pyrochlorstruktur vor.

Auf die Verwandtschaft der Weberitstruktur einerseits zu den Pvrochloren und andererseits zu den hexagonalen Wolframbronzen ist an anderer Stelle hingewiesen worden (4, 7). Eine trigonale Variante der Weberitstruktur haben wir jetzt in der Struktur der Verbindung Na₂MnFeF₇ aufgefunden, bei deren Beschreibung auf die hier nur angedeuteten strukturellen Zusammenhänge näher eingegangen wird (29). Für eine bei Na₂MnFeF₂ mittels Neutronenbeugung festgestellte Tendenz zu einer teilweise gemischten Kationenverteilung Na/Mn fehlt bei Na2NiFeF7 jeder Hinweis. Die denkbare Alternative einer gemischten Ni/Fe-Verteilung kann durch die vorliegende Röntgenstrukturuntersuchung nicht ganz ausgeschlossen werden. Außer den erwähnten, etwas verkürzten Ni-F-Abständen weist aber nichts in diese Richtung.

Dank

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung durch Sach- und Personalmittel.

Literatur

- 1. A. BYSTRÖM, Ark. Kemi Mineral. Geol. 18, 1 (1944).
- 2. J. CHASSAING, C.R. Acad. Sci. C. 268, 2188 (1969).
- 3. R. HÄNSLER UND W. RÜDORFF, Z. Naturforsch B 25, 1305 (1970).
- R. COSIER, A. WISE, A. TRESSAUD, J. GRANNEC, R. OLAZUAGA, UND J. PORTIER, C.R. Acad. Sci. C. 271, 142 (1970).
- R. VIEBAHN-HÄNSLER, Dissertation, Tübingen (1971).
- J. M. DANCE, These de Doctorat es Sciences, Université de Bordeaux I (1974).
- 7. A. TRESSAUD, J. M. DANCE, J. PORTIER, UND P. HAGENMULLER, Mater. Res. Bull. 9, 1219 (1974).
- G. HEGER UND R. VIEBAHN-HÄNSLER, Solid State Commun. 11, 1119 (1972).
- 9. G. HEGER, Int. J. Magnetism 5, 119 (1973).
- "International Tables for X-Ray Crystallography," Vol. 1, Birmingham (1969).

- J. NEUBÜSER (Kiel) UND H. WONDRATSCHEK (Karlsruhe), Maximal subgroups of the space groups, Manuskript (1969).
- 12. R. B. FERGUSON, Amer. Mineral. 34, 383 (1949).
- 13. A. TRESSAUD, J. M. DANCE, M. VLASSE, UND J. PORTIER, C.R. Acad. Sci. C 282, 1105 (1976).
- 14. A. TRESSAUD, J. M. DANCE, J. M. PARENTEAU, J. C. LAUNAY, J. PORTIER, UND P. HAGENMULLER, J. Cryst. Growth 32, 211 (1976).
- U. MÜLLER, CADLP, Algol-Programm zur Lorentz-Polarisationskorrektur von Diffraktometerdaten. Marburg (1971).
- 16. J. M. STEWART et al., X-Ray 72, Program System for X-Ray Crytallography, University of Maryland (1972), Programmteil ORFLS nach W. R. Busing, K. O. Martin und H. A. Levy, ORNL-TM-305 (1962).
- D. T. CROMER UND J. T. WABER, Acta Crystallogr. 18, 104 (1965).
- 18. C. BROSSET, Dissertation, Stockholm (1942).

- 19. A. OKAZAKI, Y. SUEMUNE, AND T. FUCHIKAMI, J. Phys. Soc Japan 14, 1823 (1959).
- 20. J. E. WEIDENBORNER UND A. L. BEDNOWITZ, Acta Crystallogr. B 26, 1464 (1970).
- 21. D. BABEL, Z. Anorg. Allg. Chem. 369, 117 (1969).
- 22. R. HAEGELE, W. VERSCHAREN, UND D. BABEL, Z. Naturforsch. B 30, 462 (1975).
- 23. D. BABEL UND R. HAEGELE, J. Solid State Chem. 18, 39 (1976).
- 24. G. HEGER, R. GELLER, UND D. BABEL, Solid State Commun. 9, 335 (1971).
- 25. A. TRESSAUD, J. GALY, UND J. PORTIER, Bull. Soc. Fr. Mineral. Cristallogr. 92, 335 (1969).
- 26. D. BABEL, F. WALL, UND G. HEGER, Z. Naturforsch. B 29, 139 (1974).
- 27. R. D. SHANNON, Acta Crystallogr. A 32, 751 (1976).
- 28. J. M. DANCE, J. GRANNEC, C. JACOBONI, UND A. TRESSAUD, C.R. Acad. Sci. C 279, 601 (1974).
- 29. W. VERSCHAREN UND D. BABEL, J. Solid State Chem., im Druck (1978).